接收换能器非线性理论研究

周一丰

(中国科学院东海研究站)

一、接收换能器非 线性理论研究

在一般的声学问题中, 人们总是将换能 器视为线性器件。即作用于换能器表面的声 压和换能器两端的开路电压呈线性关系。但 是在非线性声学中、由于参量阵的工作频率 向低频方向的发展以及参量阵近场应用研究 的展开, 换能器的非线性效应也就比较明显 了,它直接影响和干扰了实验测量结果。例 如, 在参量发射阵的近场实验中, 由于水听 器距发射换能器较近, 因此, 此时原频衰减 很小, 作用于水听器的原频声波很强, 而参 量发射阵作为一种"虚端射阵"当阵长较短 时,水介质非线性形成的差频信号未能经过 足够的累加,因为差频信号很弱,这样用于 换能器非线性效应产生的差频分量直接迭加 在参量阵形成的差频信号上。因此,在测量 差频指向性时,在声轴附近形成虚假的尖峰 效应, 造成了测量的误差。

- 一般声学系统中的非线性干扰源通常有 三种:
- 1.由于发射电系统的非线性形成差频信 / 号通过发射换能器的直接幅射。
- 2.由于发射器的非线性效应形成的差频 幅射。
- 3. 由于接收换能器的非线性效应形成的 差频信号。

换能器非线性研究历史并不很长。基本 上是随着参量阵近场研究的展开而开展起来 的。许振夏教授和Humphrey博士从信号干 扰角度出发研究了水听器非线性对参量阵近 场实验的影响,并首先提出了换能器优劣系 数MF的概念:

换能器优劣系数MF定义为[1]:

 $MF = 20\lg(\alpha(F_{-})\beta(f_{0})) = 20\lg(\alpha(F_{-}))$ $/(V_{n}/p_{1}p_{2}))$ (1)

式中 $\alpha(F_-)$ 为差频 F_- 时的水 听 器 一 阶 接收灵敏度系数, $\beta(f_0)$ 为换能器 的二 阶 灵敏度系数, P_1 , P_2 为发射的原频声压 幅 值。 V_a 为由于水听器非线性形成的差 频 电 压 输出。

他们通过研究指出,在参量阵测量中,特别是在参量阵近场测量中,干扰主要来自水听器的多线性。因此,为了保证参量阵测量的信号。换能器的 MF值应具备一定的数值以确保在某个干拢比以上,他们还认为应把优劣系数MF 列为换能器的重 要 指 标 之一。

Moffer 在换能器 非线性方面作了大量的工作。Moffer教授研究的作眼点和许教授和H博士不一样。Moffer 研究水听器的非线性。实验过程中视水介质非线性形成的信号为干扰。而后者的水听器的非线性形成的参频信号为干扰,但他们研究内容的实质是一样的。

Moffer 推导了二阶 灵敏度和换能 器极 化电压E的关系^[2]:

 $Nes(f_0) \sim 2M(f_0) - 20lgE - 12 dB(2)$ 其中Nes.M分别为一阶灵敏 度 的 分贝表达式。

但在实验过程中,式(2)与实验结果并不 相符,二阶灵敏度和一阶灵敏度系数不成平 方关系。因此,Moffef 排除了极化电压对水 听器线非性的贡献。他指出,水听器内部接 触不良,粘合不密等很可能是水听器非线性 的原因,用这种方法亦可无损地检测换能器 的接触和粘合等性能。

有些作者还讨论了护套等对换能器非线 性的影响,结果也排除了这种影响的可能性。

最近几年内,人们对换能器的非线性作 了详尽的研究。排除了外在因素对换能器非 线性的影响。因此,换能器非线性的原因只 能是电致伸缩本身的非线性。我们将在这方 面作一推导,,研究水听器非线性和一些参 数的关系,在以往的研究中,只是通过实验 测定二阶灵敏度参数。这里存在这样一些问 题,首先不能明确影响非线性的各因素之间 的关系。比如说和一阶灵敏度系数的关系, 一般测量差频幅度和差频之间的关系。但这 样实际上过份简化了他们之间的关系。因为, 即使在同样的差频条件下,当原频条件不同 时, 差换幅度亦不一样。另外, 通常使用的 二阶模型过于不完备,因为,水听器复杂的 非线性效应不能简单地用二阶 模型 概括。 Moffer利用e-P关系的抛物性图形,利用极 化偏置求得的二阶系数与实验结果相谬之远 即为一例,再者,以往的一些非线性模型只 能解决差频频率很低的情况,当差频增大时, 则无能为力了。因此,有必要建立一个比较 理想的换能器非线性模型。

下面,我们将一种新的,简洁的思想和方法引入换能器非线性研究中。

二、理论的建立

换能器非线性最完整的理论应该去解非 线性压电方程,以及应力应变的非线性方程。 我们还未能寻找到这样非线性方程的解的形式。一般只能通过求数值解的方式,这不仅 很复杂,且其功效和实验测定大同小异,我 们将建立这样一种简洁的非线性模式,我们 是辨证地将压电过程中的电和力分割开来,将换能器看成一种特殊的电容,在外力作用下,换能器的两端产生一定量的电荷,当我们将换能器视作线性器件时,我们这样认识换能器的"线性"过程,换能器的整个线性理论实际上就是为了解释压电关系,即求出换能器的频响。在外力作用下,换能器产生的形变很小,以至可以忽略,此时,换能器产生的形变很小,以至可以忽略,此时,换能器被看作一个静电容。在一定频率的声压作用下,产生一定的开路电压,如果换能器在频率f时的接收灵敏度系数为mi,则根据电容两端电荷和电压的关系,我们用mi来计算换能器上产生的电荷Q:

因为
$$Q/e = C = s/d = Q/mp$$
 (3)
所以 $Q = m_t P \epsilon s/d$

其中,m_t为一阶灵敏度系数,P为作用 于换能器表面的声压幅值,ε,s,d分别为换 能器材料的介电系数,面积和厚度,我们主 要考虑厚度振动方式的换能器,这种换能器 在接收换能器中有一定的代表性。

当我们考虑换能器的非线性效应时,应 该考虑由于外力作用换能器产生 相 应 的 应 变。这样,换能器大小参数,产生微小的变 化,对于厚度振动换能器而言,其厚度发生 了变化,因此,换能器不能被视作恒定电流, 而应该是受外界声压控制的动态电容,我们 用下面的流程图表达这两个过程。

$$(2) \quad P \longrightarrow Q \xrightarrow{C} e$$

$$\downarrow \qquad \qquad C(P)$$

图(1)表达了线性过程,P为外界声压幅值,我们将mi视为P至Q间的线性桥,非线性的关键在于电容C,在考虑非线性效应时,我们认为该只C为非线性电容,其容值受外界声压的参数控制。

我们考虑厚度振动的圆盘换能器, 其厚

度为1, 面积为s, z轴为其极化轴方向。

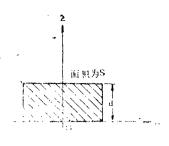


图1

我们作这样的假定:

- (1) 只考虑沿厚度方向,即Z方 向的振动。
- (2) 所有垂直于Z轴的平面上的振动 是 均匀的。

因此,只有厚度方向有应力波的传播,即 $T_z\neq 0$,

在以上的假设下,我们得到2 轴方向的振动方程。

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{c^2} \cdot \frac{\partial^2 \xi}{\partial t^2}$$
 (5)

其中 $c = \sqrt{E/\rho}$ 为圆 盘换能器的纵向传播速度, ξ 为振动位移。E 为材料的扬 氏模量。

式(5)的通解形式为:

$$\xi(tz) = (A\cos kz + B\sin kz)\cos\omega t$$

换能器处于接收状态时,通常是一面受外界声压作用另一面处于应力释放状态。如果外界声压幅值为P₀,频率为f,作用面为z=1平面,而z=0为应力释放平面,则换能器接收状态的边界条件可写成:

$$\left(\begin{array}{c}
\frac{\partial \xi}{\partial z}
\right) \Big|_{z=0} = 0$$

$$\left(\begin{array}{c}
\frac{\partial \xi}{\partial z}
\right) \Big|_{z=1} = -\frac{P_0}{E} \cos \omega t$$

这样,将(6)式代入式(7),我们求得振动解为:

$$\xi(tz) = \frac{P_0}{Ek \cdot Sinkl} \cdot coskl \cdot cos\omega t$$
(8)

换能器的两端边界位移分别为

$$\xi(t) \mid z=0 = p_0/Ek \cdot Sinkl$$
 (9)

$$\xi(t) \mid z = t = p_0/Ek \cdot Sinkl \cdot cosRl$$

(10)

则当外界声压作用时**,换能**器的厚度变化为

$$\triangle d = \xi(t) \mid_{z=0} - \xi(t) \mid_{z=1}$$

$$= \frac{p_0}{EkSinkl} \cdot (1 - coskl) cos\omega t(11)$$

在参量阵应用和非线性测量中,信号通 常为调制形式:

$$P = p_0 \cos \frac{\omega_1}{2} \cos \omega_0 t$$

=
$$p_0/2 \cdot \cos(\omega_0 - \omega_{1/2})t + p_0/2 \cdot \cos(\omega_0 + \omega_{1/2})t$$
 (12)

其中 ω_0 为原频率, ω_1 为差 频频率,实际上是发射了频率分别为 $W_{\pi} = W_0 + W_1/2$ 和 $W_{\pm} = W_0 - W_1/2$,幅值均为 $P_0/2$ 的两列波。

利用式(2)和式(3),我们求出形式为式(12)的信号作用下在换能器两端产生的电荷Q(t)

$$Q(f) = \frac{P_0 \epsilon s}{21} \left(m_i \pi \cdot \cos \omega_{\pi} + m_i \stackrel{.}{\underset{.}{\cancel{--}}{\cancel{--}}} \right)$$

其中min和mi差分别为频率fn和fi差时的 换能器一阶接收灵敏度系数。

利用式(11)我们求得换能器的厚度变化为:

$$\triangle d_{\pi} = \frac{P_0}{2Ek_{\pi} \cdot Sink_{\pi}1}$$

$$\cdot (1 - cosk_{\pi}1) \cdot cos\omega^{\pi}t (14)$$

$$\triangle d \triangleq \frac{P_0}{2Ek_{\frac{1}{2}} \cdot \sin k_{\frac{1}{2}} 1}$$

 $(1-\cos R_{\frac{1}{2}}) \cdot \cos \omega_{\frac{1}{2}} t$ (15) 这样,换能器两端的开路电压表达式为:

$$e = \frac{Q(f)}{c(f)} = \frac{P_0 \epsilon s / 21 (m f_{n} \cos \omega_{n} t)}{\epsilon S / (1 - \Delta d_n - \Delta d_{\bar{z}})}$$

$$= \frac{P_0}{2l} \left[m_{t} \pi \cos \omega_{R} t + m_{t} \frac{1}{2} \cos \omega_{R} t \right] \left[1 - \frac{P_0}{2Ek_{R} \sin k_{R} t} \cdot (1 - \cos k_{R} t) \cdot \cos \omega_{R} t \right]$$

$$- \frac{P_0}{2Ek_{R} \cdot \sin k_{R} t} \cdot (1 - \cos k_{R} t) \cdot \cos \omega_{R} t$$
(16)

式(16)展开,我们得到差频项的系数为:

$$A = -\frac{P_0^2}{8El} \left[\frac{m_{i\hbar} \cdot (1 - \cos k \pm l)}{k \pm \sin k \pm l} + \frac{m_{i\pm} \cdot (1 - \cos k \pm l)}{k \pm \sin k \pm l} \right]$$

$$= -\frac{P_0^2}{8El} \left[\frac{m_{i\hbar}}{k \pm} \cdot tg \frac{k \pm l}{2} + \frac{m_{i\pm}}{k \pm} tg \frac{k \pm l}{2} \right]$$
(17)

至此,我们完成了理论的推导,从式(17) 我们看出这样一些直观推断:

- (1) 非线性效应与极化电压无关,在推导过程中,我们看到与极化电压有关的介电系数被约去。
- (2) 非线性效应和一阶灵敏度系数有直接的关系。
- (3) 非线性效应不仅和差频频率有关, 而且和发射信号的原频有关。
- (4) 非线性效应还和材料的特性以及尺寸有关,式(17)中主要和材料的杨氏模量以及换能器的厚度有关。

如果差频信号频率较低,我们近似认为 W_和 = W_{*} = W₀,则此时式(17)写成

$$\dot{A} = -P_0^2/4E1 \cdot \frac{m_{f0}}{k_0} + tgk_0 1/2$$

$$= -\frac{p_0^2 m_{f0}}{4Ek_0 1} \cdot tg \frac{k_0 1}{2} \tag{18}$$

如果用以往所用的二阶灵敏度系数 η 来 表达的话,则在同样的信号形式下,其差频 幅度为

$$+\frac{m_t \not\geq k_{\bar{n}}}{k_{\bar{n}}} \cdot \operatorname{tg} \left(\frac{k_{\bar{n}} \cdot 1}{2}\right)$$
 (20)

而与式(18)相应的η为

$$\eta_0 = -\frac{m_{f0}}{Ek_0 l} \cdot tg \frac{k_0 l}{2}$$
 (21)

从式(21)可以看到,式(21)和 Moffet教授推导的结论不同,我们这儿η和 原频时 的接收灵敏度系数成正比,而不是和差频时的接收灵敏度系数平方成正比。

若从η的角度讨论,其特性和上面列出的 几条性质类似。

以后的工作是实验的研究,有必要提出,由于换能器的非线性比较微弱,因此,测量精度是其中的关键,以往的一些测量常常准确性不好,或前后测量误差较大,这也是造成理论结果不能很好地吻合的原因之一。

本文成文得到许振夏教授的 指 导 和 帮助,作者表示衷心的感谢。

参考文献

- [1] 许振夏,"换能器非线性及其对参量 阵的测量和应用的 影响,《声技术 学》1983年第2期。
- (2) M.13. Moffer "Hydrophone nonlinearify measurement", JA
 -SA 72(1), Julh 1982 P.1-6.
- [3] 孙旋笙"换能器非线性实验研究", 内部资料。
- [4] "微波参量放大器", 科学出版社, 1960年