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Abstract: For passive acoustic target tracking in a distributed sensor network, this paper proposed a local node selection 

algorithm based on conditional posterior Cramér-Rao lower bounds (CPCRLB). The approximate analytical expression 

of  CPCRLB is derived by utilizing particle filters for bearing-only measurements, and it is used to define the utility 

contribution as the node selection criterion. In the proposed algorithm, each node can only use the local information to 

determine whether to be activated without the knowledge of  all nodes in the network. Simulation results prove the ef-

fectiveness of  our method and show good performance in tracking accuracy, energy consumption and computational 

complexity. 
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0  Introduction1 

Wireless sensor networks (WSNs) are infor-

mation-driven systems that rely on collaboration of 

randomly deployed sensor nodes. Target Tracking is 

one of the most important applications in WSNs, 

which is a target state estimation problem fusing the 

measurements of sensor nodes. However, the re-

sources of WSNs are extremely constrained. It is un-

reasonable to allow all nodes to participate in tracking 

at every time step because of the superfluous energy 

expenditure. Therefore, an efficient node selection is 

necessary to make a trade-off between tracking accu-

racy and energy consumption. 

The node selection is an optimization problem to 

find the best subset of active nodes. F. Zhao et al.
[1]

 

propose an information-driven sensor querying 

(IDSQ) approach to sensor selection. H. Wang et al.
[2]

 

present an entropy-based sensor selection heuristic 
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method. G. M. Hoffmann et al.
[3]

 use mutual infor-

mation as the objective function of sensor manage-

ment. However, as the information theory methods, 

their computational complexity becomes very high 

with the increase in the number of sensor nodes
[4]

. In 

recent years, the posterior Cramér-Rao lower bound 

(PCRLB) attracts much concern of scholars
[5]

. The 

PCRLB provides a mean squared error (MSE) lower 

bound of the target state estimation, but it does not use 

the actual observation data. L. Zuo et al.
[6-7]

 propose 

conditional posterior Cramér–Rao lower bounds 

(CPCRLB). It provides a more accurate and effective 

online performance limit than PCRLB when the past 

measurements up to the current time are all known. In 

order to simplify the calculation, Y. Zhang et al.
[8]

 give 

a new approximate iteration formula for directly cal-

culating CPCRLB. There has been a lot of researches 

about node selection for reference
[9-13]

. 

In this paper, we consider a distributed system for 

passive acoustic target tracking and propose a local 

node selection algorithm based on CPCRLB. The mi-

crophone array nodes are used in this system, which 

can give bearing-only measurements by direction of 

arrival (DOA) estimations. There is no data processing 

center for nodes to send their measurements. The ad-

vantage of the distributed system is that the failure of 

one sensor node does not impact the entire system. In 

the proposed algorithm each node only uses their local 

node information and does not need the knowledge of 

all nodes. Therefore, it does not need to recalibrate 

when nodes burn out or new nodes are added to the 
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network. Moreover, it can reduce most of the commu-

nication cost and realize autonomous node selection. 

In order to more clearly describe the algorithm, 

we use the following notations throughout this paper, 

as shown in Table 1. 
Table 1  The notations throughout this paper 

Notation Significance 

N The number of nodes in the WSN 

S The number of particles in particle filters 

aN  The set of active nodes 

aN
 

The number of active nodes in aN  

sN  
The set of all nodes 

sN
 

The number of nodes in sN  

dN  

The set of nodes from aN that retain ac- 

tive at the next snapshot 

dN
 

The number of nodes in dN  

a
ɶN

 

The final set of active nodes at the next  

snapshot 

cN  The set of the candidate nodes 

cN  The number of candidate nodes in cN  

1  CPCRLB 

1.1  System Model 

The two-dimensional target state is denoted as 
T

[ , , , ]k k k k kx y x y= ɺ ɺX , where T
[ , ]k kx y  and T

[ , ]k kx yɺ ɺ
 

represent the target position components and velocity 

components at the k  snapshot respectively. The sys-

tem state equation can be written as 

1k k k k+ = +X F X W   (1) 

where 
k
F is the state transition matrix and

k
W is the 

process noise. Assume that the target motion model is 

the constant velocity (CV) model and
k

W is the Gauss-

ian white noise with covariance matrix Q , then 
3 2

3 2

2

2
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where t  is the time between snapshots, q is a parame-

ter of the process noise.  

A bearings-only measurement of the microphone 

array node j at the 1k+  snapshot is given by 

1
1 1 1 1

1

arctan( )
j

j j j jk
k k k kj

k

x x
z h v v

y y
+

+ + + +
+

−
= + = +

−
 (2) 

where
1

j

kh + represents the ideal measurement, [ , ]
j j

x y  

is the location of node j and the measurement noise 

1

j

kv +  is the zero-mean Gaussian white noise with the 

standard deviation 
v

σ , i.e., 2

1 ~ (0, )
j

k vv N σ+ . 

The measurement set of all N nodes at the 1k+  

snapshot is denoted as  
1 T

1 1 1[ , , ]
N

k k kz z+ + += ⋅⋅⋅Z   (3) 

1.2  Derivation of CPCRLB 

The CPCRLB provides a conditional mean 

squared error limit of the state vector for the upcom-

ing snapshot 1k+  given by the measurements up to 

the snapshot k , which is lower bounded by the in-

verse of the conditional Fisher information matrix as 
T 1

1 1 1 1 1: 1 1:
ˆ ˆ{[ ] [ ] } ( )k k k k k k k

−
+ + + + +Ε − − ≥X X X X Z L X Z (4) 

According to the corollary
[8]

, the conditional 

Fisher information 
1 1:( )k k+L X Z for the linear state 

model with additive Gaussian noise is given by  
1 1 22,

1 1: 1: 1( ) ( ( ) )T b

k k k k k k k

− −
+ −≈ + +L X Z Q F L X Z F B  (5) 

1
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c
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c
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=

=

X Z Z
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where
1

c
kp +

Ε is the expectation of the probability density 

function (PDF) 
1

c

kp + . The calculation can begin the 

initial iteration with 0

00 1 0( ) { ln ( )}p− =Ε −∆ ⋅X

XL X Z X . 

For the bearings-only target tracking system, the 

mathematical expression of 22,b

kB does not exist.  

Here particle filters are used to approximate the target 

state estimation. Assume that there are S weighted 

particles ( ) ( )

1{ , }
l l S

k k lω =X at the k snapshot, and all 

weights are equal to 1 S after the resampling step. 

Then, the posterior PDF 
0: 1:( )k kp X Z  at the k  snap-

shot can be given by 

( )

0: 1: 0: 0:
1

1
( ) ( )

S
l

k k k k
l

p
S

δ
=

≈ −∑X Z X X  (8) 

Hence,  

( ) ( )

1 0: 0: 1 1
1

1
( ) ( )

S
c l l

k k k k k
l

p p
S

δ+ + +
=

≈ −∑ X X Z X  (9) 

According to the measurement model (see (2) 

and (3)), we can get the logarithmic likelihood func-

tion as  
2

1 1
1 1 2

1

( )
ln ( ) [ ln 2 ]

2

j jN
k k

k k v
j v

z h
p σ

σ
+ +

+ +
=

−
= − − π∑Z X (10) 

From (6)～(10), we can derive the approximate 

analytical expression of the symmetric matrix 22,b

kB  as 

follows: 

( )
1 1

2
22, 1

2 2 2 2
1 1 1 1

( )1
(1,1)

[( ) ( ) ] l
k k

jS N
b k

k j j
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( )
1 1

2
22, 1

2 2 2 2
1 1 1 1

( )1
(2, 2)

[( ) ( ) ] l
k k

jS N
b k

k j j
l jv k k

x x

S x x y yσ
+ +

+

= = + + =

−
=

− + −∑∑
X X
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  (13) 

22, 22, 22, 22,
(1, 3) (1, 4) 0, (2, 3) (2, 4) 0

b b b b

k k k k= = = =B B B B  (14) 

22, 22, 22,
(3,3) 0, (3, 4) 0, (4, 4) 0

b b b

k k k= = =B B B  (15) 

Then the condition Fisher information 

1 1:( )k k+L X Z can be calculated by (5).  

2  Local Node Selection for Distributed 

Target Tracking 

2.1  Criterion for Node Selection 

The goal of node selection for target tracking is 

to achieve better tracking accuracy with less resource 

consumption. Because the CPCRLB gives a lower 

bound of the target state estimation error, the position 

components of CPCRLB can be used as the object 

function for node selection. In this paper, we consider 

finding the active nodes set 
a
N  of 

a
N  nodes in a net-

work 
s

N  of 
s

N  nodes. The conditional mean squared 

position error can be expressed as 
1 1

1 1: 1,1 1 1: 2,2
( ) [ ( )] [ ( )]

a k k k k
ρ − −

+ += +N L X Z L X Z  (16) 

where 
,

[ ]
i j

A is the ( , )
th

i j  element of the matrix A .  

We define the information utility of 
a
N

 
as the 

reciprocal of the mean squared position error, 

1
( )

( )a
a

u
ρ

=N
N

  (17) 

then node selection becomes the problem of finding 

a
N to maximize the utility ( )

a
u N .  

At a given snapshot, each node needs to decide 

whether or not to become active or inactive. In the 

local node selection algorithm, the active nodes have 

no knowledge of other nodes. The inactive nodes can 

determine their added utility to the active nodes set 

a
N . We define the utility contribution for each node 

j  in the active nodes set
a
N as 

( ) ( ) ( \ )a a auc j u u j= −N N N  (18) 

The utility contribution of the inactive node i  

which is potential to be activated is defined as the in-

cremental utility by replacing one of the active nodes 

in 
a
N , 

( ) max[ (( \ ) ) ( \ )]
a

a a aj
uc i u j i u j

∈
= −

N
∪N N N  (19) 

When the added utility of the inactive node i  is 

greater than that of the active node j , the inactive node 

i  maybe can become active to improve the overall 

utility by replacing the active node j . 

 

2.2  Local Node Selection Algorithm 

This section describes our proposed node selec-

tion algorithm based on CPCRLB for passive acoustic 

target tracking in a distributed sensor network. It is a 

local method because the node can only use its local 

information, the active nodes do not know if any inac-

tive nodes are available. 

Initialization At the beginning of target tracking, 

this algorithm incorporates an exhaustive search 

strategy to first find the best active set aN  of aN  

nodes by maximizing the utility as (17). Then the best 

aN  nodes communicate with each other to use their 

bearing measurements for the target state estimation.  

Local node selection At this stage, we need to 

achieve the local node selection for the next upcoming 

snapshot. First, each node j  in aN uses the greedy 

method as stated above to search the best dN  nodes 

from aN . The set of the dN  nodes is labeled as dN , 

and these nodes remain active to participate in track-

ing at the next snapshot. However, it is possible that 

an inactive node is better than the nodes in dN  for 

activation.  

In order to allow appropriate inactive nodes to 

join the active nodes set, the steps are taken as fol-

lows. First, all nodes in dN  calculate their own util-

ity contribution ( )duc j N via (18). Then, these nodes 

set a threshold τ  for an inactive node i  to join dN  

as the thκ  largest utility where the integer [1, ]dNκ∈ . 

Next, the active nodes in dN  broadcast the threshold 

τ , their locations and the predicted target position. 

Here, the inactive nodes which can receive data from 

all nodes in dN are called as candidate nodes, that is, 

candidate nodes are in the communication range of all 

nodes in dN . The set and the number of the candidate 

nodes are denoted as cN and cN respectively. It can be 

known that only the candidate nodes are possible to be 

active at the next snapshot. Therefore, we use a com-

munication range cr  to limit the number of candidate 

nodes for saving energy consumption. 

Then the candidate nodes can calculate their util-

ity contribution ( )duc i N by (19). If ( )duc i N is greater 

than the thresholdτ , then the inactive node i  joins 

dN  to become active. The final set of active nodes is 

labeled as a
ɶN , which will be the active status at the 

next snapshot.  

From the above, the local node selection is pa-

rameterized by dN and κ . The parameter dN  repre-

sents the minimum number of nodes that will remain 

active, and the parameter κ decides the threshold of 
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the utility contribution that an inactive node becomes 

active. Fig. 1 shows the flow chart of the local node se-

lection algorithm. 

2.3  Communication Model 

The local node selection algorithm can be im-

plemented at each node in a distributed sensor net-

work. The proposed algorithm can balance the need 

for tracking accuracy with less energy cost. In order to 

evaluate the energy consumption of the algorithm, this 

paper introduces the communication model [13]. Under 

the simplified assumptions, the energy to transmit 

m bits of data over a distance of d  meters is  
4

elec ampt
E m m dε ε= +   (20) 

The energy of receiving this data is 

elecr
E mε=   (21) 

where
elec
ε and

amp
ε are the energies to run the electron-

ics and the power amplifier per bit respectively. Here 

we set the parameters as follows:
elec
ε =0.5×10-7 J·bit-1, 

m=500 bits and 
amp
ε =1.3×10-14 J·bit-1·m-4. 

3  Simulation 

In order to demonstrate the performance of the 

proposed algorithm (labeled as LNS-CPCRLB), we 

apply it to the distributed sensor network for acoustic 

target tracking and compare it with the CPCRLB 

method and the RANDOM method in terms of track-

ing accuracy and energy consumption. Here, the 

CPCRLB method for distributed target tracking is a 

completely greedy search approach to optimal nodes. 

The RANDOM method uses the random selection of 

activate nodes. 

Consider that 50 microphone array nodes ran-

domly deployed over a field of 250 250×  m2. The  

Fig.1  The flow chart of the local node selection algorithm  
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initial target state is [-100,-100,5,5] and the target 

movement follows the CV model with t=1 and q=0.5. 

The tracking duration is 50 s. The Fig.2 shows the 

target trajectory and the nodes deployment. The 

standard deviation of the measurement noise is 

5 /180
v

σ = ×π
 

rad. One hundred Monte Carlo simula-

tions are generated for performance evaluation. The 

number of particles in the particle filter is 300S = , and 

the communication range is 80 m
c

r = . According to 

the practical requirement and the characteristics of 

bearings-only tracking, we use the setting of the pa-

rameters as 3
a

N = , 2
d

N = and 1κ = . The Fig.3 illus-

trates the root mean square error (RMSE) of node se-

lection algorithms over 100 Monte Carlo simulations. 

It is shown that all three algorithms are able to com-

plete the target tracking task.  

From Fig.4, we can see that our proposed algo-

rithm has good performance on the tracking accuracy 

almost as the CPCRLB method. The CPCRLB algorithm 

has the best tracking accuracy, because it chooses the 

best nodes subset from all nodes using exhaustive 

search strategy. During tracking, the energy consump-

tion of the three algorithms can be calculated by the 

communication model as previously described. Table 

2 shows the statistical average results over 50 snap-

shots for 100 Monte Carlo simulations and the compu- 

tations for node selection per snapshot. It can be seen 

that our proposed algorithm significantly reduces the 

 
Fig.2  The target trajectory and the nodes deployment 

 

 
Fig.3  The tracking results of  three different node selection method 

 
Fig.4  The RMSE for tracking on the X axis and Y axis 

energy consumption while maintaining the accurate 

target state estimation. The CPCRLB and RAN-DOM 

method have more energy consumption because of the 

communication between active nodes and all other 

inactive nodes. Moreover, the total computations for 

node selection are given in the last column of Table 2. 
 

 
Table 2  The statistical average results over 50 snapshots 

Algorithm 
Average active 

nodes number 

Energy Con-

sumption 

Average RMSE 

(X axis) 

Average RMSE 

(Y axis) 

Total computations 

for node selection 

LNS-CPCRLB 4.536 9 0.054 9 1.141 1 1.165 2 
( )

!

! !
a

c
d a d

N
N

N N N
+

−
 

CPCRLB 3 2.608 4 1.015 3 1.094 1 
( )

!

! !
s

a s a

N

N N N−
 

RANDOM 3 2.689 3 2.756 0 3.583 8 Depend on randomized method 
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In other words, the times of computing the utility are 

described by the number of nodes as shown in Table 

2. The computations of LNS-CPCRLB consist of two 

parts: searching the largest utility ( )
d

u N  from 

a
N and computing the utility of each candidate node 

from
c
N . For the CPCRLB algorithm, the computa-

tions are the times of calculating
 

( )
a

u N from
s
N . 

LNS-CPCRLB can reduce computations generally 

because
a

N is much less than
c

N . The RANDOM algo-

rithm is not related to the computation of the utility. 

Overall, the simulation results show good perfor-

mance of the proposed algorithm on the trade-off be-

tween the tracking RMSE and energy usage. 

4  Conclusions 

This paper proposed a local node selection algo-

rithm based on CPCRLB for passive acoustic target 

tracking in a distributed sensor network. In order to use 

the CPCRLB as the node selection criterion, we derive 

the computational formula of CPCRLB based on bear-

ing-only measurement model, and define the utility 

contribution of active nodes and inactive nodes. The 

candidates of inactive nodes can only use their local 

information to decide the activation by the added util-

ity contribution to the active set. Simulation results 

prove that the proposed algorithm has good tracking 

accuracy with less energy expenditure. 
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分布式传感器网络中基于条件后验克拉美-罗 

下界的被动声目标跟踪局部节点选择算法 

江潇潇，赵晓丽，金 婕，邓 琛 

(上海工程技术大学电子电气工程学院，上海 201620) 

摘要：针对分布式传感器网络下的被动声目标跟踪问题，提出了一种基于条件后验克拉美罗下界(Conditional Posterior 

Cramér-Rao Lower Bounds, CPCRLB)的局部传感器节点选择算法，基于被动声探测背景下的纯方位量测数据，采用粒

子滤波器推导得到了 CPCRLB的近似解析表达式，进而在该 CPCRLB的基础上定义了节点效用贡献作为节点选择准

则，结合分布式传感器网络的特点提出了一种局部节点选择方法，节点无需知道全网传感器节点的信息，而是仅利

用局部节点信息来决定下一时刻节点的活动状态，从而在实现自治节点选择的同时大大减少网络通信量。通过仿真

结果表明，该算法在跟踪精度、能量消耗和计算复杂度方面都表现出较好的性能。 

关键词：节点选择；后验克拉美罗下界；纯方位目标跟踪；粒子滤波；分布式传感器网络 
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