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Abstract: In order to solve the problem of  poor performance of  traditional adaptive equalization algorithm in sparse 

multipath channels, a new adaptive equalization algorithm based on 
2ℓ -norm is proposed. This algorithm takes ad-

vantage of  the sparsity of  equalizer weights in sparse multipath channel, and regards the training process of  adaptive 

equalizer as the weighted sum of  sparse signal to dictionary in compressed sensing theory, so as to solve the problems of  

iterative parameter setting and slow convergence. This new algorithm, which combines 
2ℓ -norm with compressed 

sensing, not only improves the weight accuracy, but also reduces the computational complexity. Simulation results show 

that the proposed algorithm can achieve better performance with less computation amount and fewer training sequences, 

and has a reference value for improving the communication performance of  the system. 

Key words: sparse multipath channel; adaptive equalization; 
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0  Introduction1 

Inter-symbol interference (ISI) caused by multi-

path propagation is especially common in underwater 

acoustic communication and broadband mobile com-

munication
[1]

, which has greatly hindered the trans-

mission of reliable information. In order to offset the 

inter-symbol interference, the filter needs to adaptive-

ly track the change in channel conditions to recover 

the distortion caused by multipath transmission
[2]

 in 

the moving environment. 

Common underwater acoustic communication 

and broadband mobile communication are generally 

sparse multipath channels, that is, the energy of chan-

nel impulse response mainly focuses on a few taps 

with a long interval, and the energy of most taps tends 

to zero. When the source passes through the channel, 

inter-symbol crosstalk can be up to dozens or even 

hundreds of symbol intervals. 

However, in the sparse multipath channel, the 

traditional adaptive algorithm needs to send a large 

number of training sequences periodically, which 

leads to the slow convergence speed of the algo-

rithm
[3]

. Therefore, an adaptive algorithm with small 

computation amount and fast convergence speed is 

required in the sparse multipath channel. In this paper, 
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a new adaptive equalization algorithm is introduced, 

which combines the 
2ℓ -norm of the equalizer output 

on the basis of the traditional minimum mean square 

error algorithm, and then combines compressed sens-

ing due to sparseness of the equalizer weights in the 

sparse multipath channel. Therefore this algorithm can 

be called compressed training based adaptive (CoTA) 

algorithm. 

1  Adaptive equalization and compres-

sion sensing theory 

In digital communication, ISI is caused by the 

change of channel characteristics, and it can be re-

duced or eliminated by equalization
[4]

. Due to the 

randomness and time variability of mobile fading 

channels, the equalizer must be able to track the 

time-varying characteristics of mobile communication 

channels in real time
[5]

. Adaptive equalizer generally 

includes two working modes: training mode and 

tracking mode
[6]

. In this paper, the least mean square 

error criterion is used to realize adaptive equalization. 

Figure 1 is a simple schematic diagram of an adaptive 

filter
[7]

, here  where total 2 1N+  taps are set up and 

the corresponding weighting coefficients are 

1, , ,N N NC C C− − + ⋅⋅⋅  respectively. 

Assuming that the sampling value sequence of 

the input waveform is{ }kx  and the sampling value 

sequence of the output waveform is{ }
k

y , then: 

, 2 , , 2
N

k i k i
i N

y C x k N N−
=−

= =− +∑ ⋯  (1) 

The sending sequence is defined as { }ka  and 

then the error signal is: 
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k k k
e y a= −   (2) 

Mean square error is defined as: 

2 2E( )
k k

e y a= −   (3) 

According to (1): 

2 2E( )
N

i k i k
i N

e C x a−
=−

= −∑   (4) 

Thus, the mean square error is a function of the 

tap gain, and it is expected that the mean square error 

should be minimized for any k, The partial derivative 

of the above equation to i
C  can be written as: 

2

2E[ ]k k i
i

e
e x

C −
∂ =
∂

  (5) 

where 
ke  is the error signal the error mainly re-

fers to inter-symbol crosstalk and noise. 

To minimize the mean square error, E[ ]k k ie x −  

must be equal to zero, which requires the error to be 

independent of the input sample values of the equaliz-

er. In Fig.1, the tap gain can be adjusted by the statis-

tical average of the product of the error and the sam-

ple value. If the average is not equal to zero, the gain 

should be adjusted so that the average value ap-

proaches zero until it is equal to zero. 

 
Fig.1  Schematic diagram of  adaptive filter 

The adaptive convergence of weights in tradi-

tional Least Mean Square (LMS) algorithm  is slow 

in sparse multipath channels, where a large number of 

sequences are required, and the utilization rate of fre-

quency band is not ideal
[8]

. However, impulse response 

energy of sparse multipath channel is mainly concen-

trated on several taps with large spacing between each 

other, and the most of tap energies are tending to zero, 

so the weights of the equalizer in sparse multipath 

channel are sparse, and the training process of adap-

tive equalizer can be regarded as the weighted sum of 

sparse signals to the dictionary in Compressed Sens-

ing (CS) theory. Many engineering problems involve 

the process of solving sparse signals, but the CS theo-

ry needs to satisfy two necessary conditions: The 

original signals are sparse in a transform domain and 

the observation matrix satisfies finite isometric prop-

erty
[9]

. CS can reconstruct potential sparse signals 

from actual observations by solving optimization 

problems, and the sparse domain is used to restore the 

original signals, therefore, it has a wide range of ap-

plications in medical, communication, imaging and 

other scientific fields. 

In this paper, the CS method is used to reflect the 

overall channel 
ng  which is based on the 

2ℓ -norm 

of the output sequence { }kZ  of the equalizer. That is, 

the output of the peak equalizer is a measure of the 

sparseness of 
ng : the lower the output of the peak 

equalizer, the sparser the equalization channel. 

The relationship between the output { }kZ of 

equalizer and the emission symbol{ }nS  and the im-

pulse response{ }ng  of equalized channel is shown as 

follows: 
1

0

GL

n k n kk
z g s

−

−=
=∑   (6) 

Thus, it can be concluded that: 
1 1

2
0 0

G GL L

n k n k k n k n
k k

z g s g s g s
− −

− − ∞
= =

= ≤ ≤∑ ∑  (7) 

The above inequality is caused by triangle ine-

quality and Holder inequality
[10] respectively, and the 

inequality 
2p nz g s ∞∞

≤ can be directly obtained 

from Holder inequality. If the M-PAM constellation is 

assumed to be used for transmitting symbols, namely:

{ }1, 3, , 3, 1
n

s M M M M∈ − + − + ⋅⋅⋅ − − , then ( 1)ns M∞ −≤ . 

Therefore, the following bound can be obtained: 

2
( 1)Pz M g∞ −≤   (8) 

1 1

0 0

1

2
0

( )( 1)

( 1) ( 1)

G G

G

L L

l k l k k k
k k

L

k
k

z g s g sign g M

M g M g

− −

−
= =

−

=

= = − =

− = −

∑ ∑

∑
 

(9)

 

The above equation indicates that under a suita-

ble assumption, the inequality (8) can be written as an 

equality, given that the transmitting sequence is suffi-

ciently rich in the sense. 

If there is any l to make: sign( )( 1)l k ks g M− = −
{ }0, , 1Gk L∀ ∈ ⋅⋅⋅ −  or sign( )( 1)l k ks g M k− =− − ∀ ∈  

{0, , 1}
G

L⋅⋅⋅ − true, then
2

( 1)lz M g=− −  is also true. 

According to the expression (8), it can be concluded 

that: 

2
( 1)P lz z M g∞= = −   (10) 

The ∞ℓ -norm of the equalizer output vector re-

flects the 
2ℓ -norm of the equalized channel impulse 

response. As a result, the minimization of the peak abso-

lute value of the equalizer outputs amounts to the sparsi-

fication of the combined channel equalizer impulse re-
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sponse or equivalently to the reduction of the ISI. 

2  Compression sensing adaptive equal-

ization settings 

In the complex square Multiple-Quadrature Am-

plitude Modulation (M-QAM) constellation case, the 

transmitting symbols take their values from the set

{ : , { 1, 3, , 3, 1}}Q a jb a b M M M M= + ∈ − + − + ⋅⋅⋅ − − .

The optimization settings for Pulse Amplitude Modula-

tion (PAM) can be adapted to the complex QAM sce-

nario by replacing 
Pz  with the vector 

T[Re{ }P Pz zɶ ≜
T TIm{ }]Pz . For example, the optimization in Noise-

less-Setting for QAM can be converted simply as 

Noiseless-Setting-QAM 

minimize subject
P T TW

z to Y w s∞ =ɶ  (11) 

and similarly Noisy-Setting-III can be adapted to the 

QAM case as Noiseless-Setting-Ⅲ-QAM: 

2
minimize

T T PW
Y w s zλ ∞− + ɶ  (12) 

The reason behind this slight modification of the 

QAM case can be explained by the following equation: 
T T

T T

Re{ } Re{ }Re{ } Im{ }

Im{ } Im{ }Im{ } Re{ }

n n

n n

z sg g

z sg g

−    =        
 (13) 

Consequently, 

[ ]

2

Re{ } Im{ }

( 1)

P P Pz z z

M g

∞ ∞ ∞ ∞
=

−

ɶ

ɶ
 (14) 

As a result, the minimization of Pz ∞
ɶ  amounts 

to the sparsification of gɶ  and, therefore, the corre-

sponding g , as in real PAM constellations. Further-

more, the equivalent optimization settings for QAM 

can be written in terms of gɶ . As an example, the 

equivalent of Noiseless-Setting-QAM in this case can 

be written as Noiseless-Equivalent-Setting-QAM: 

1

Re{ } Im{ }
minimize subject to

Im{ } Re{ }
Tg

S S
g g s

S S

−  =  ɶ
ɶ ɶ ɶ (15) 

In this paper, the adaptive equalization algorithm 

combines the 
2ℓ -norm output of the equalizer on the 

basis of the traditional minimum mean square error 

algorithm, and then combines compressed sensing to 

form the compressed training based adaptive (CoTA) 

algorithm. The steps are as follows: 

(1) Equalizer outputs: [ ] [ ]
P

z i Y w i← ; 

(2) Real equalizer output peaks: 

re ( [ ]) [ ]1
[ ] 1 sign( [ ]) )

P

P n P

L

z i z i P n nn
P i z i eα ∞>=

←∑ ɶ ɶ
ɶ ; 

(3) Imag equalizer output peaks: 
2

im ( [ ]) [ ]1
[ ] 1 sign( [ ]) )

P

P n P pp

L

z i z i P n n Ln L
P i z i eα ∞> −= +

←∑ ɶ ɶ
ɶ ; 

(4) 2- norm gradient: Ⅲ 
H

[ ]

2 H

[ ] 2

( )
[ ]

( )
T

T

T TW i S

T TW i S

Y Y
u i

Y Y

−

−

← ; 

(5)
 
∞ -norm weighted subgradient: 

1

re im

1

re im 2

( [ ] [ ])
[ ]

( [ ] [ ])

H

P

H

P

Y P i jp i
u i

Y P i jp i

−

∞ −

∏ +
←

∏ +
; 

(6) Update vector: 

2
[ ] [ ] [ ]( [ ] [ ])u i w i i u i u iµ λ ∞← − + ; 

(7) Nesterov step: 

1
[ 1] [ ] ( [ ] [ 1])

2

i
w i u i u i u i

i

−+ = + − −
+

; 

(8) Normalization: 
H

H

[ 1]

[ 1]
[ 1] [ 1]

[ 1]
TT S

T TW i

w i Y
w i w i

w i Y Y +

+
+ ← +

+
. 

In this algorithm, Step 1 is to calculate the output 

of the equalizer. Step 2～3 are used to determine the 

potential real and imaginary peaks of the equalizer 

outputs. Here [ ]Pz i ∞
ɶ  represents the absolute sample 

peak of the cascaded real and imaginary components 

of the equalizer outputs[11], Due to the presence of 

noise, the true peak may do not overlap with the sam-

ple peak. As a result, the operation performed at these 

steps marks all indices of 
Pzɶ  for which the absolute 

values are within the α  (an empirical algorithm pa-

rameter) factor of the sample peak as potential peak 

locations[12]. Therefore, the thn  component of 

re im[ ]( [ ])P i p i  is set to the sign of the real (imaginary) 

part of the thn  component of [ ]Pz i  if its absolute 

value is greater than [ ]Pz iα ∞
ɶ ; otherwise, it is set to 

zero. Step 4 is the gradient for the 
2ℓ -norm compo-

nent, and Step 5 is the weighted subgradient for the 

∞ℓ -norm component of Noisy-Setting III-QAM. Steps 

6-7 correspond to an accelerated equalizer vector up-

date based on the “Nesterov Method”, where u  is an 

intermediate algorithm variable with [0] 0u =  initial-

ization. Step 8 is the normalization of the equalizer 

vector to reduce the bias. 

The CoTA algorithm can be used to realize the 

flexible structure of decision guidance pattern. After 

the initial iteration, the algorithm can continuously 

extend the training region by appending the reliable 

decisions. In the following part, the compressed sens-

ing adaptive equalization without noise is analyzed to 

judge the impact of training sequence on the results. 

2.1  Noiseless case 

General communication groups contain evenly 

distributed M-QAM (or M-PAM) information sym-
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bols and the training symbols constructed from the 

corners of the same constellation. Then, the corre-

sponding noiseless equivalent setting has 
1de +  as the 

unique solution, and its probability of P  has to be 

satisfied: 
11 ( 1) TL

GP L C
− +> − −   (16) 

Where C is 4 for QAM and 2 for PAM constella-

tions. Equation (16) is also true for general PAM and 

QAM constellations. Equation (16) illustrates the 

phase transition result for the sparse reconstruction 

problem in compressed sensing as it arises as the 

equivalent problem to original adaptive equalization 

problem in noiseless setting. 

Therefore, the amount of training required in the 

noiseless (or high-SNR) case is approximately equal 

to log ( )C GL ρ+ , where ρ  represents a safety mar-

gin for the completion of phase transition. Assuming 

that the length of equalizer 
EL  is approximately 

equal to the channel spread
CL , then: 

log (2 )
T C E

L L ρ≈ +   (17) 

According to the number of equalizer coeffi-

cients, for channel propagation: 

log (2 )
T C C

L L ρ≈ +   (18) 

This corresponds to a low training size relative to 

the number of equalizer coefficients, which is equal to

ErL , especially if the channel and equalizer lengths 

are relatively long. 

Therefore, in the case of noiseless, the pro-

posed approach reduces the required training length 

to less than the number of unknown parameters
ErL , 

while maintaining the perfect equalization solution

1dg e += . 

2.2  Noisy case 

When SNR is relatively low, the following two 

performance indicators need to be considered. 

ISI level: 

2

ISI 1 2
E( )dL g e += −   (19) 

Mean square error: 
2

MS

2 2 1

1 22

E( )

E( ) E( )

n n d

d T T

e z s

g e V w L

−

−
+

= −

= − +
 (20) 

Where, the second term on the right hand side of 

(15) represents the filtered noise power at the output 

of the equalizer. 

It can be seen that 
ISIL  and 

MSe  expressions in 

the noisy case also confirm that the training length 

should be greater than log( )GL . 

 

3  Adaptive single-carrier frequency- 

domain equalization 

The following compressed training approach to 

Single-Carrier Frequency-Domain Equalization (SC- 

FDE), takes advantage of the special convolution 

structure of the frequency-selective channels. In this 

scheme, the linear convolution channel is, in effect, 

converted to a circulant convolution channel through 

the inclusion of a cyclic-prefix symbol. A predeter-

mined Unique-Word (UW) sequence{ , {1, , }}n Tu n L∈ ⋅⋅⋅ , 

where T
L  is the UW length, is appended to the begin-

ning and the end of the data sequence

{ , {1, , }}n Dd n L∈ ⋅⋅⋅ , where 
DL

 
is the length of the data 

symbols, to form the transmit block of the SC-FDE 

system. The unique word serves both as the training 

sequence and as the cyclic-prefix block, and its size is 

selected to be greater than the presumed channel 

spread. According to this figure, at each receiver 

branch, after prefix removal, 
P T DL L L= + consecutive 

time-domain receiver samples are vectorized  
( ) , 1, ,k LPy C k r∈ = ⋅⋅⋅ ,and converted to frequen-

cy-domain vector 
( )k

y  through 
PL -point FFT oper-

ation, represented as 
( ) H ( )k k

y=Y F . The equalizer op-

eration corresponds to the combination of ele-

mentwise-multiplied frequency-domain vectors 

( )

1

( )
r

k

k

k
=

= ⊗∑Z W Y   (21) 

Where ⊗  is the elementwise multiplication op-

erator and 
( )

, 1, ,
k

k r= ⋅⋅⋅W are equalizer coefficient vec-

tors. The equalizer output converted to the time do-

main is given by =z FZ . 

In the adaptive setting, the scenario where the 

equalizer is trained by using a single block is consid-

ered. This is a desired performance for the adaptive 

algorithm which gives the channel coherence time 

constraints mandated by wireless mobile environ-

ments. The compressed training approach is a good fit 

for this task, where the goal is to increase the room for 

the data symbols by restricting the amount of training 

symbols in the same block (the presented approach 

can be easily extended to multi-block-based training). 

For the adaptive compressed training-based SC-FDE, 

the following optimization setting is designed: 

2
SC-FDE Setting: min

subject to
E

dW

L

λ ∞− +

∈

ɶE z u z

W F
 (22) 

Where d is the target equalization delay and 
dE  

is the matrix that extracts the part of the z matrix cor-
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responding the UW symbols based on the selected 

choice of delay. 
dE  is a submatrix obtained by de-

leting 
DL  rows of the 

P PL L×  identity matrix. It can 

be written as [0 ]
Td L d=E I A , where multiplication of 

z with 
dA  is equivalent to applying the circular d 

-advance operation on z to position the elements of z  

corresponding to UW to the last T
L  rows, i.e., the 

compensation of the equalization delay. Multiplication 

by [0 ]
TLI extracts the UW region from the circularly 

shifted z. 

ELF  is the set of frequency domain equalizers 

with impulse response length less than or equal to 

EL , which can be written as 

{ :[0 ] 0}P

E P E E P E

L

L L L L L LW C I FW− × −= ∈ =F  (23) 

First its argument is transformed to the time do-

main, all components are become zeros except the 

first 
EL  and then the frequency domain is trans-

formed back to.  

4  Simulation experiment and analysis 

In order to verify the performance of the pro-

posed compressed training based adaptive algorithm, 

the traditional LMS adaptive equalization algorithm is 

compared. The contrast experiments are conducted in 

the cases with noise and without noise to show the 

superiority of compressed training based adaptive al-

gorithm. 

4.1  Noisy case 

In this case, the input signal is set as 

( ) cos( 0.02 ) sin(2 0.02 )

cos(3 0.02 ) sin(4 0.02 )

cos(5 0.02 ) sin(6 0.02 )

cos(7 0.02 ) sin(8 0.02 )

cos(9 0.02 ) sin(10 0.02 ), 0, , 1

x n n n

n n

n n

n n

n n n N

= π× + π× +
π× + π× +
π× + π× +
π× + π× +
π× + π× = ⋅⋅⋅ −

 

and Gaussian noise with a variance of 0.5 is added to 

conduct experiments of two different algorithms re-

spectively, in which the number of fixed taps of the 

compressed training based adaptive algorithm is 5. 

The experimental results are shown in Fig.2. 

From Fig.2(a), it can be seen that the fitting of 

the actual signal and prediction signal output by the 

traditional LMS adaptive equalization algorithm is not 

very ideal and the rate of convergence is slow. The 

fitting has not converged at the 500th step of iteration, 

and even the fluctuation is relatively large, which is 

mainly caused by the insufficient training sequence. 

Compared with the traditional LMS adaptive equali-

zation algorithm, the compressed training based adap- 

 

 
(a) Traditional LMS adaptive equalization algorithm 

 
(b) Compressed training based adaptive algorithm 

Fig.2  Experimental results of  adaptive equalization with noise 

tive algorithm in Fig.2 (b) has an ideal fitting with the 

prediction signal and basically converges in about 150 

steps of iteration. Its convergence speed is obviously 

much faster than that of the traditional LMS algo-

rithm. 

4.2  Noiseless case 

The above signals are still used in this experi-

ment, except that there is no noise added in this  

case. The experiment results of two different algo-

rithms are shown in Fig.3. 

Similar to the results of the experiment 4.1, the 

convergence speed of the compressed training based 

adaptive algorithm is much faster than that of the tra-

ditional LMS algorithm. The fitting shown in Fig.3(a) 

does not converge well even at the 500th step of itera-

tion, while the fitting shown in Fig.3(b) is basically 

stable at the 150th step of iteration. 

Therefore, whether there is noise or not, the per-

formance of the CoTA algorithm is better than that of 

traditional LMS algorithms. 

4.3  Comparison with BP algorithm 

In order to better illustrate the advantages of the 

compression equalization adaptive algorithm, the al-

gorithm complexity and precision are compared. 
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In Table.1 the numbers of iterations required by the 

CoTA algorithm and the Basis Pursuit(BP) algorithm to 

achieve optimal performance are listed together with 

the time complexity of each iteration and the time re-

quired to complete the iteration. As shown in Table.1, 

the time complexity of each iteration of BP algorithm 

and CoTA algorithm is ( )O N . However, in order to 

achieve steady state, the number of iterations of BP 

algorithm increases by about 300 compared with that 

of CoTA algorithm. Therefore, CoTA algorithm has a 

lower number of iterations and a shorter running time.  

 
(a) Traditional LMS adaptive equalization algorithm 

 
(b) Compressed training based adaptive algorithm 

Fig.3  Experimental results of adaptive equalization without noise 

Table 1  Complexity comparison 

Algorithm 
Time complexity per 

iteration 

The number 

of iterations 

Running 

time/s 

The BP O(N) 426 0.011 8 

CoTA O(N) 108 0.009 6 

The simulation experiments of the BP algorithm 

in the cases of the first 500 sample points with and 

without noise are conducted, and the results are shown 

in Fig.4, from which it can be seen that no matter 

whether there is noise or no noise, a large error exists 

between the actual output signal and the ideal output 

signal after the 500th step of iteration. Especially, 

when the signal changes rapidly, the error is more se-

rious. which indicates that the convergence accuracy 

of the BP algorithm is not high and the convergence 

effect is not very good even at the 500th step of itera-

tion due to the existance of relatively large fluctuation, 

which is mainly caused by insufficient training se-

quences. For the BP algorithm, at least 400 iterations 

are needed to gradually reach a convergence state, 

where the actual output signal and the ideal output 

signal are basically fitted, and the error vector ampli-

tude EVM of the error signal obtained by the simula-

tion is 0.113 2. Such a fitting result is not ideal for 

modeling in practical application. 

 
(a) noise 

 
(b) No Noise 

Fig.4  Experimental results of adaptive equalization with/without 

       noise by BP algorithm 

Compared with the experimental results for Co-

TA algorithm in Fig.2, it can obviously be found that 

the convergence speed of CoTA algorithm is faster 

than that of BP algorithm. By the CoTA algorithm, 

only 90 iterations are required to achieve a better fit-

ting and reasonable output signal. The error vector 

amplitude EVM of the output signal obtained by the 

simulation is 0.006 8, which is two orders of magni-

tude smaller than the EVM obtained by BP algorithm. 

The comparison between CoTA algorithm and 

Basis Pursuit (BP) algorithm can explain why this 

paper uses 2
ℓ  -norm instead of 1

ℓ  -norm. BP is a 

1
ℓ -norm based algorithm which is much more 

com-plex than the 2
ℓ  -norm based CoTA algorithm 
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pro-posed in this paper. Therefore, the (CoTA) algo-

rithm can not only reduce the computational complex-

ity, but also improve the weight accuracy. 

5  Conclusion 

In this article, aiming at the shortcoming of slow 

convergence speed of traditional adaptive equalization 

algorithm, the compressed training based adaptive 

algorithm is introduced as a novel approach utilizing 

the magnitude boundedness of digital communication 

sources. The algorithm is based on the minimization 

of the“ 2
ℓ -norm” of the equalizer output and a fixed 

tap constraint is added to the equalizer coefficients. In 

addition, compressed sensing and adaptive equaliza-

tion problems are related. It can be seen from the sim-

ulation results that the algorithm proposed in this pa-

per improves the training speed and achieves better 

equalization performance. Therefore, this algorithm 

has obvious advantages in improving the communica-

tion performance of the system under sparse multipath 

channel. 
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稀疏多径信道自适应均衡算法研究 

李文艳，朱婷婷，王 琪 

(西安工业大学电子信息工程学院，陕西西安 710021) 

摘要：针对传统自适应均衡算法在稀疏多径信道中性能较差的问题，提出了一种基于

2ℓ -范数的自适应均衡算法。该

算法利用稀疏多径信道下均衡器权值的稀疏性，将自适应均衡器的训练过程看作压缩感知理论中稀疏信号对字典的

加权求和，以解决迭代参数的设置及收敛速度慢的问题。该算法将

2ℓ -范数和压缩感知相结合，不仅提高了权值的精

度，而且降低了计算复杂度。仿真结果表明，该算法计算量小，训练序列少，具有较好的性能，对提高系统的通信

性能具有参考价值。 

关键词: 稀疏多径信道；自适应均衡；
2ℓ -范数；压缩感知 
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