文章摘要
于晓林,骆文于,杨雪峰,张仁和.一种基于波数积分方法的线源声场计算方法[J].声学技术,2017,(5):415~422
一种基于波数积分方法的线源声场计算方法
A wavenumber-integration method based solution to the acoustic field excited by a line source
投稿时间:2016-11-04  修订日期:2017-02-15
DOI:10.16300/j.cnki.1000-3630.2017.05.004
中文关键词: 线源问题  波数积分  稳定性解法
英文关键词: line-source problem  wavenumber integration  numerically stable solution
基金项目:国家自然科学基金资助项目(11434012、41561144006)
作者单位E-mail
于晓林 中国科学院声学研究所声场声信息国家重点实验室, 北京 100190
中国科学院大学, 北京 100049 
asd982209895@126.com 
骆文于 中国科学院声学研究所声场声信息国家重点实验室, 北京 100190  
杨雪峰 中国科学院大学, 北京 100049
中国科学院声学研究所东海研究站, 上海 201815 
 
张仁和 中国科学院声学研究所声场声信息国家重点实验室, 北京 100190  
摘要点击次数: 322
全文下载次数: 379
中文摘要:
      提出了在Pekeris波导条件下,一种基于波数积分方法的线源声场中的稳定数值计算方法。通过对深度格林函数中上行波与下行波的归一化,得到稳定的系数矩阵,从而求得格林函数的解析解。对深度格林函数进行模式展开,验证了该方法得到的深度格林函数解析解的准确性。结合仿真实例,将该方法得到的波数积分模型与传统简正波模型KRAKENC的结果进行比较,结果显示,当某号简正波的波数与海底波数接近时,KRAKENC计算不出该号简正波,会导致KARKENC的计算结果不准确,而波数积分方法可以很好地解决该问题。因此,提出的方法可以作为Pekeris波导中线源激发声场的标准模型。
英文摘要:
      An unconditionally stable computation method based on the wave-number integration method is presented for the acoustics field excited by a line source in a Pekeris waveguide. Both up and down going waves in the depth-dependent wave equation are appropriately normalized in order to obtain a stable coefficient matrix. Analytical solution to the depth-dependent Green's function is also presented. Modal expansion of the Green's function is performed to validate the analytical solution. It indicates that the analytical solution is accurate. The transmission loss calculated by this method is compared with those given by KRAKENC with an example. It shows that when a certain mode is close to the bottom wavenumber, KRAKENC fails to find this mode. As a result, the field result by KRAKENC is inaccurate. However, the wavenumber-integration method suits well for such problems. Numerical results indicate that the present model can serve as a benchmark model for the problem of sound propagation excited by a line source in a Pekeris waveguide.
查看全文   查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=EBE48E44E31C76411EC1FBB43252DC463478AD0BF326EEB87A3929B74399B9CF6460F987990A2E96B69D4B293E1A004C7C14D32C24E68BC27C69ABC22AB5A38EF22A213E88BDBE2DBB34E362BD399C07B3652D2534A3C64D667615AD2E5B19A4&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=84529CA2B2E519AC&jid=DDCFCD5ACE1B1E5A6D46213553C850CA&yid=FA004A8A4ED1540B&aid=&vid=&iid=94C357A881DFC066&sid=BFB86B6ED3A99B9D&eid=B941678158018439&fileno=20170504&flag=1&is_more=0">