文章摘要
周静雷,颜婷,房乔楚.VMD-Hilbert变换在扬声器异常声检测中的应用[J].声学技术,2020,39(2):200~207
VMD-Hilbert变换在扬声器异常声检测中的应用
The application of VMD-Hilbert transform in loudspeaker Rub & Buzz detection
投稿时间:2019-04-15  修订日期:2019-06-15
DOI:10.16300/j.cnki.1000-3630.2020.02.013
中文关键词: 扬声器异常声检测  时频分析  变分模态分解  Hilbert变换  特征距离
英文关键词: loudspeaker Rub & Buzz detection  time-frequency analysis  variational mode decomposition  Hilbert transform  feature distance
基金项目:
作者单位E-mail
周静雷 西安工程大学电子信息学院, 陕西西安 710600  
颜婷 西安工程大学电子信息学院, 陕西西安 710600 yantingannie@163.com 
房乔楚 西安工程大学电子信息学院, 陕西西安 710600  
摘要点击次数: 65
全文下载次数: 58
中文摘要:
      针对基于时频分析的扬声器异常声检测方法中短时傅里叶变换、小波包变换存在的不足,提出了一种基于变分模态分解-希尔伯特(Variational Mode Decomposition and Hilbert,VMD-Hilbert)变换的扬声器异常声检测方法。首先通过仿真信号分析,研究了VMD-Hilbert变换的时频特性,并与其他三种时频分析进行了对比,结果表明VMD-Hilbert变换具有更好的自适应性、能量聚焦性与时频分辨率。然后,对实测扬声器声响应信号进行VMD-Hilbert变换,求得被测扬声器单元的时频矩阵与标准时频矩阵之间的特征距离,并与其它三种时频分析下的特征距离进行对比。实验结果表明,VMD-Hilbert变换下的类间特征距离的离散度较大,便于更好地设定阈值,从而验证了VMD-Hilbert变换能更好地表征异常声的时频特征,以及其在处理非线性、非平稳的扬声器声响应信号时的优越性。
英文摘要:
      In view of the shortcomings of loudspeaker Rub & Buzz detection based on time-frequency analysis, such as short-time Fourier transform and wavelet packet transform, a method of loudspeaker Rub & Buzz detection based on variational mode decomposition and Hilbert (VMD-Hilbert) transform is proposed. Firstly, the time-frequency characteristics of the VMD-Hilbert transform are studied by simulation signal analysis, and compared with the other three time-frequency analysis methods. The results show that the VMD-Hilbert transform has better adaptability, energy focus and time-frequency resolution. Then, the sound response signals of measured loudspeakers are processed with VMD-Hilbert transform to obtain the feature distances between the measured loudspeakers. The comparative analysis of feature distances obtained by different time-frequency analysis methods is made. The experimental results show that the dispersion of the feature distances between classes under VMD-Hilbert transform is larger, which is beneficial for setting the appropriate threshold. It is verified that the VMD-Hilbert transform can better represent the time-frequency characteristics of Rub & Buzz, and its superiority in dealing with nonlinear and nonstationary loudspeaker sound responses is also verified.
查看全文   查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=93F632ED6E2662A6FCE07206EF7DDEE3E7D3A43A646D28656A2AC317602A8B2C8597E7584079E36CB7E1D2337B9366AFA4C6BCB23A76908CF6DFE8DAB0F458A65BBA8673DF75BD607E6F2311DF4C6FD3&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=84529CA2B2E519AC&jid=DDCFCD5ACE1B1E5A6D46213553C850CA&yid=0D1D160AB8016934&aid=&vid=&iid=0B39A22176CE99FB&sid=1E41DF9426604740&eid=334E2BB8B9A55ABB&fileno=20200213&flag=1&is_more=0">