文章摘要
周鹏,李成娟,赵沁,王艳,唐洪莹,李宝清,袁晓兵.基于语谱图与改进DenseNet的野外车辆识别[J].声学技术,2020,39(2):235~242
基于语谱图与改进DenseNet的野外车辆识别
Field vehicle identification based on spectrogram and improved DenseNet
投稿时间:2018-12-10  修订日期:2019-02-05
DOI:10.16300/j.cnki.1000-3630.2020.02.019
中文关键词: 野外运动车辆分类  深度特征  密集卷积网络  语谱图  中心损失
英文关键词: field vehicle identification  deep features  Dense convolution network structure  spectrogram  center loss
基金项目:微系统技术重点实验室基金项目(614280401020617)
作者单位E-mail
周鹏 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800
上海科技大学信息学院, 上海 201210
中国科学院大学, 北京 100049 
 
李成娟 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800
中国科学院大学, 北京 100049 
 
赵沁 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800
中国科学院大学, 北京 100049 
 
王艳 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800  
唐洪莹 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800  
李宝清 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800  
袁晓兵 中国科学院上海微系统与信息技术研究所微系统技术重点实验室, 上海 201800 sinowsn@mail.sim.ac.cn 
摘要点击次数: 182
全文下载次数: 378
中文摘要:
      针对在野外运动车辆分类过程中,传统梅尔倒谱系数与高斯混合模型分类方法对干扰噪声较为敏感的情况,提出了改进的密集卷积网络结构(DenseNet)方法。首先是将声音信号转换为语谱图,然后送入到改进的DenseNet网络结构中进行识别。其中,改进的DenseNet网络结构是在全连接层加入了中心损失(center loss)函数,使得同类特征聚合程度较高,这样就能够提取出声音信号的深度特征,有利于分类。实验结果表明,在相同的样本集下,改进DenseNet方法的识别率得到了明显的提升,达到97.70%。
英文摘要:
      The traditional classification method based on Mel cepstrum coefficient and Gaussian mixture model is sensitive to interference noise in the classification process of field vehicles. To address the issue, an improved method based on dense convolution network structure (DenseNet) is proposed in this paper. First, the acoustic signal is converted to the spectrogram and then inputs to the improved DenseNet network structure for identification. The improved DenseNet network structure adds the function ‘center loss’ at the full connection layer to make the similar features more highly aggregated, so that the depth features of the acoustic signal can be extracted, which is beneficial to classification. The experimental results show that under the same sample set, the recognition rate of the improved DenseNet method can reach 97.70%, which outperforms the existing method.
查看全文   查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=D265E0FF8710A10137B275C6C1917C0189E2491665AD21F5E9FABD918A31726AC5AEE94AF7AE40FAD2A6C9950FD0905CF4D8876B64B73E17BF8394D09C0EB818235B00532434ED32&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=84529CA2B2E519AC&jid=DDCFCD5ACE1B1E5A6D46213553C850CA&yid=0D1D160AB8016934&aid=&vid=&iid=0B39A22176CE99FB&sid=6CCE24D86D03D083&eid=0C191C6ECF79047F&fileno=20200219&flag=1&is_more=0">