文章摘要
高翔,陈向东,宋爱国,陆佶人.基于遗传算法的神经网络被动声呐目标分类研究[J].声学技术,1998,(4):169~172
基于遗传算法的神经网络被动声呐目标分类研究
Study on neural network classifier of passive sonar target based genetic algorithm
投稿时间:1998-06-22  修订日期:1998-09-02
DOI:
中文关键词: 声呐  目标分类  遗传算法  神经网络
英文关键词: sonar  targets classification  genetic algorithm  neural network
基金项目:
作者单位
高翔 东南大学无线电工程系, 南京 210018 
陈向东 东南大学无线电工程系, 南京 210018 
宋爱国 东南大学无线电工程系, 南京 210018 
陆佶人 东南大学无线电工程系, 南京 210018 
摘要点击次数: 1320
全文下载次数: 1076
中文摘要:
      被动声呐目标识别系统中目标分类器的设计和训练是一项重要内容.本文设计了目标分类器的神经网络结构,提出了一种用改进的遗传算法训练神经网络分类器的新方法.最后,对海上实录的A、B、C三类目标噪声进行了分类识别,实验结果表明基于遗传算法的神经网络分类器比传统的基于BP算法的神经网络分类器泛化性能有明显提高.
英文摘要:
      The targets classifier is a key element in passive Sonar target recognition systems.In this paper,the structure of neural network targets classifier is designed.We proposed a novel method for training neural network targets classifier by using an improved Genetic Algorithm (GA).The targets classifier is used to classify three different classes of targets:A,B and C.The result of experiment shows that the preformance of GA based neural network targets classifier is better than that of Back propagation algorithm based neural network targets classifier.
查看全文   查看/发表评论  下载PDF阅读器
关闭