文章摘要
张建伟,相敬林.舰船辐射噪声的小波域HMM分析[J].声学技术,2000,(2):60~63
舰船辐射噪声的小波域HMM分析
Analyzing the ship-radiated-noise with the wavelet-domain HMM model
投稿时间:1999-07-14  修订日期:1999-11-30
DOI:
中文关键词: 舰船辐射噪声  小波域HMM  统计信号处理
英文关键词: ship radiated noise  wavelet domain HMM  statistics signal processing
基金项目:
作者单位
张建伟 西北工业大学航海工程学院, 西安 710072 
相敬林 西北工业大学航海工程学院, 西安 710072 
摘要点击次数: 657
全文下载次数: 769
中文摘要:
      基于小波的统计信号处理技术,一般都将小波系数建模为独立或联合高斯的,但这些模型对许多实际信号来说并不理想.在本文中,我们使用一种基于小波域隐马尔可夫模型(HMM)的统计信号处理结构,对实际信号涉及的统计独立性和非高斯统计进行建模.小波域HMM使用小波变换的基本性质来设计,提供了强有力并易处理的随机信号模型.我们使用一种有效的期望值最大化算法来将小波域HMM用于观察得到的信号数据,即舰船辐射噪声.从初步结果来看,由这种模型的参数可以区分不同类型的信号.
英文摘要:
      Wavelet-based statistical signal processing techniques generally model the wavelet coefficients as independent or jointed Gaussian.These models are unrealistic for many real signals.In this paper,we use a framework for statistical signal processing based on wavelet-statistics encountered in real-world signals.Wavelet-domain HMM's are designed with the intrinsic properties of the wavelet transform in mind to provide powerful,yet tractable,probabilistic signal models.Efficient expectation maximization algorithms are used for fitting the HMM's to the observational signal data,viz.the ship radiated noise.Based on one simple experiment,a result show that different type signals can be classified according to the parameter of this model.
查看全文   查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=852E476ECD0193203167DA7D34E766A55F1A26214669AAEF2B8117ECD13FFC81B90800CE07FCA3322C4C9405E8660B70AA7294B9824FBD3F5DE7169F14057951CE3766CE20A6A7B3&pcid=5B3AB970F71A803DEACDC0559115BFCF0A068CD97DD29835&cid=84529CA2B2E519AC&jid=DDCFCD5ACE1B1E5A6D46213553C850CA&yid=9806D0D4EAA9BED3&aid=&vid=&iid=0B39A22176CE99FB&sid=BFE7933E5EEA150D&eid=E84BBBDDD74F497C&fileno=20000203&flag=1&is_more=0">