文章摘要
陈曦,汪源源,王威琪.血栓多普勒信号的多参数提取及分类[J].声学技术,2004,(1):20~24
血栓多普勒信号的多参数提取及分类
Extraction of multiple characteristics and classification of Doppler embolic signals
投稿时间:2003-04-14  修订日期:2003-06-24
DOI:
中文关键词: 血栓检测  超声多普勒  小波变换  renyi信息量  BP神经网络
英文关键词: emboli detection  Doppler ultrasound  wavelet transform  Renyi information content  back-propagation neural network
基金项目:上海市曙光计划资助(2003901)
作者单位
陈曦 复旦大学电子工程系, 上海, 200433 
汪源源 复旦大学电子工程系, 上海, 200433 
王威琪 复旦大学电子工程系, 上海, 200433 
摘要点击次数: 1131
全文下载次数: 809
中文摘要:
      血栓的准确检测可以用于早期脑血管疾病的诊断,超声多普勒是一种无损的血栓检测技术。文章使用三种信号处理方法:传统的声谱分析法、小波分析法、renyi信息量分析法对血栓多普勒信号进行分析,提取出相应的特征参数,然后对敏感的特征参数采用反向传输(Back-Propagation,简称BP)神经网络进行分类,建立起血栓、干扰噪声和正常血流信号的自动判别系统。通过对300例仿真多普勒信号和163例临床采集的大脑中动脉多普勒信号进行分析,结果表明:本文建立的系统对血栓的检测率高于传统的方法,有望可用于血栓多普勒信号的自动检测。
英文摘要:
      Embolic detection can be used for early diagnosis of cerebrovascular disease. The Doppler effect of ultrasound is a non-invasive means for the detection of emboli. In this paper, three signal processing methods, i.e., traditional spectral analysis, wavelet transform and Renyi information analysis, are used to analyze embolic Doppler signals. With the extracted characteristic parameters, a classification system using sensitive parameters is set up based on a BP neural network. The system can be used to classify emboli signals, interfering noise, and normal blood flow signals. From experiments of 300 simulated cases and 163 clinical cases of Doppler signals, it has been found that the embolic detection accuracy of the proposed method is higher than that using the traditional method. It is expected that automatic detection of emboli can be realized based on the proposed method.
查看全文   查看/发表评论  下载PDF阅读器
关闭