文章摘要
谢珊,曾以成,蒋阳波.希尔伯特边际谱在语音情感识别中的应用[J].声学技术,2009,(2):148~152
希尔伯特边际谱在语音情感识别中的应用
Application of Hilbert marginal spectrum in speech emotion recognition
投稿时间:2008-03-01  修订日期:2008-04-13
DOI:
中文关键词: 情感识别  边际谱  HHT
英文关键词: emotion recognition  marginal spectrum  HHT
基金项目:
作者单位E-mail
谢珊 湘潭大学光电工程系, 湖南 湘潭, 411105  
曾以成 湘潭大学光电工程系, 湖南 湘潭, 411105 yichengz@xtu.edu.cn 
蒋阳波 湘潭大学光电工程系, 湖南 湘潭, 411105  
摘要点击次数: 1042
全文下载次数: 2124
中文摘要:
      利用希尔伯特-黄变换(Hilbert-Huang Transform,HHT)对情感语音进行处理,得到其边际谱,然后对比分析四种情感即高兴、生气、厌恶、无情感语音信号边际谱的特征,提出四个特征量:子带能量(SE)、子带能量的一阶差分(DSE)、子带能量倒谱系数(SECC)、子带能量倒谱系数的一阶差分(DSECC)用于情感识别。用它们作说话人无关,文本无关的语音情感识别,得到最高90%的识别率,比基于傅立叶变换的梅尔频率倒谱系数(MFCC)高22个百分点。实验结果表明,基于HHT边际谱的特征能够较好地反映语音信号中的情感信息。
英文摘要:
      Marginal spectrum of the emotional speech is obtained through Hilbert-Huang Transform.Speech signals of four different emotions,namely happy,angry,boring and natrual,are analyzed contrastively focusing on the characteristics of the marginal spectrum.Then four features:SE,DSE,SECC and DSECC are extracted for emotion recognition.Finally speaker-independent and text-independent emotion recognitions are simulated by using these features respectively,which gains the best recognition rate of 90%,which is 22 percentage higher than Fourier Transform based feature MFCC.Thus,conclusion is drawn that HHT marginal spectrum can well reflect the emotional information in speech.
查看全文   查看/发表评论  下载PDF阅读器
关闭