文章摘要
吴克桐,王永丰,李磊,蔡惠智.利用支持向量机提高水声信号的检测能力[J].声学技术,2009,(3):222~226
利用支持向量机提高水声信号的检测能力
Improving underwater signal detection capability by using support vector machine
投稿时间:2008-04-02  修订日期:2008-06-26
DOI:
中文关键词: 支持向量机  混响  信号检测
英文关键词: SVM  reverberation  signal detection
基金项目:
作者单位
吴克桐 中国科学院声学研究所, 北京, 100190
中国科学院声学研究所, 北京, 100190 
王永丰 中国科学院声学研究所, 北京, 100190
中国科学院声学研究所, 北京, 100190 
李磊 中国科学院声学研究所, 北京, 100190
中国科学院声学研究所, 北京, 100190 
蔡惠智 中国科学院声学研究所, 北京, 100190 
摘要点击次数: 960
全文下载次数: 1161
中文摘要:
      混响是影响主动声纳检测的一个重要因素。传统方法如高阶统计方法和修正协方差等白化方法在检测静止目标时效果并不理想,主要是因为这些算法无法利用混响这样的统计多变且非线性的数据准确估计一个AR模型的参数。利用支持向量机SVM(Support Vector Machine,SVM)来估计AR模型的参数,并进行了实验。结果表明,即使在静止目标的情况下,该算法依然能表现出良好的性能。
英文摘要:
      Reverberation is one of the most important factors that degrade the performance of active sonar detection.Traditional methods such as HOS prewhitening and modified-covariance prewhitening method have difficulties in dealing with static targets.One of the most dominant reasons is that such methods have poor ability to estimate parameters of an AR model from the nonlinear and varying statistics reverberation data.A novel method using support vector machine(SVM) to estimate the parameters of an AR model is presented.Experimental results show that the approach improves the detection performance significantly even if the target is static.
查看全文   查看/发表评论  下载PDF阅读器
关闭