王宇杰,李宇,黄海宁.一种基于蝙蝠算法的多目标跟踪数据关联方法[J].声学技术,2020,39(1):98~103 |
一种基于蝙蝠算法的多目标跟踪数据关联方法 |
A bat algorithm based data association method for multi-target tracking |
投稿时间:2019-01-14 修订日期:2019-03-20 |
DOI:10.16300/j.cnki.1000-3630.2020.01.017 |
中文关键词: 蝙蝠算法 组合优化 被动声呐 多目标跟踪 数据关联 |
英文关键词: combinatorial optimization passive sonar bat algorithm multi-target tracking data association |
基金项目:国家重点研发计划项目(2018YFC14059)、国家自然科学基金项目(11504402) |
|
摘要点击次数: 879 |
全文下载次数: 432 |
中文摘要: |
针对多目标跟踪中的数据关联问题,提出了基于蝙蝠算法的数据关联方法。首先将多目标数据关联问题建模成组合优化问题,结合数据关联的特点,对蝙蝠算法的搜索更新规则进行改进,使其可以应用于多目标的数据关联问题,并给出了基于蝙蝠算法的多目标数据关联的详细流程。通过仿真实验和被动声呐实测数据测试表明,基于蝙蝠算法的多目标数据关联方法切实可行并且具有较好的效果。 |
英文摘要: |
A method based on Bat Algorithm to deal with the data association problem for multi-target tracking is proposed. First, the multi-target data association problem is transformed into a combinational optimization problem by modeling, and then the search and update rule of the bat algorithm is improved by combing the characteristics of multi-target data association. The new version of the bat algorithm can be applied to solving multi-target data asso-ciation problems. And in this paper, the detailed process of the bat algorithm based multi-target data association method is presented. Simulation results and test data of passive sonar show that this algorithm is feasible and effec-tive. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |