文章摘要
孙世琪,刘斌,付汨,吴雪,王晶.声流条件下超声空化气泡分布研究[J].声学技术,2022,41(4):526~533
声流条件下超声空化气泡分布研究
Research on ultrasonic cavitation bubble distribution under the condition of acoustic flow
投稿时间:2020-09-03  修订日期:2021-02-27
DOI:10.16300/j.cnki.1000-3630.2022.04.007
中文关键词: 声流  超声空化  空化气泡分布  有限元方法  声致化学发光
英文关键词: acoustic flow  ultrasonic cavitation  cavitation bubble distribution  finite element method  sonochemiluminescence
基金项目:国家重点研发计划资助(2016YFD0400305)。
作者单位E-mail
孙世琪 北京工商大学人工智能学院, 北京 100048  
刘斌 北京工商大学人工智能学院, 北京 100048 liubin@th.btbu.edu.cn 
付汨 北京工商大学人工智能学院, 北京 100048  
吴雪 北京工商大学人工智能学院, 北京 100048  
王晶 北京工商大学人工智能学院, 北京 100048  
摘要点击次数: 505
全文下载次数: 560
中文摘要:
      研究了频率为 20 kHz的超声作用在圆柱形料腔中出现声流现象时超声空化效应的空间分布特性。结合大振幅声源条件下的声辐射力,对声场内的声流现象进行了仿真分析,获取了不同超声功率和液位高度下的声流速度场分布,初步探究了声流条件下空化气泡的运动分布规律。采用超声空化效应的声致化学发光实验,对比研究了有、无声流条件时超声空化效应的空间分布特性。结果表明:功放电流高于 80 mA(电功率为 17.6 W)时,超声场可形成稳定的声致流动现象且可有效提高其声能辐射效率,大大增加了空化效应的作用区域,进而提高了声化学反应效率;声流条件下料腔内超声空化效应的分布区域与超声功率(振幅)、料腔液位高度相关,功放电流从 40 mA(电功率为8.8 W)增加至 120 mA(电功率为 26.4 W)时,空化面积占比提高了 100.86%,液位高度为 60 mm时的空化面积占比较50 mm和 70 mm时分别提高了 13.11%和 73.91%,提高超声功率及选择合理的料腔液位高度,可有效提高空化气泡扩散距离,增大空化分布面积;对于固定形状及尺寸料腔中的声场,声流速度达到一定阈值时,会出现空化效应增强,空化效应增强区域位于大于声流速度阈值的区域内;空化气泡的扩散分布与声流速度场密切相关,表现为随声流速度场的变化在料腔中部沿径向扩散、沿变幅杆轴向且在料腔底部沿径向扩散、沿变幅杆轴向扩散三种扩散分布模式。
英文摘要:
      The spatial distribution characteristics of the ultrasonic cavitation effect are studied when applying 20 kHz ultrasound on the sound field of a cylindrical reactor to form acoustic flow phenomenon. Combined with the acoustic radiation force from large amplitude sound source, the acoustic flow phenomenon of sound field is studied through simulation analysis. The velocity field distributions of acoustic flow under different ultrasonic powers and liquid level heights are obtained, and the motion distribution law of cavitation bubble under the condition of acoustic flow is preliminarily explored. The sonochemiluminescence experiment of ultrasonic cavitation effect is conducted to study the spatial distribution characteristics of ultrasonic cavitation effect under the condition with and without acoustic flow. The results are shown as follows: when the power amplifier current is higher than 80 mA (the electric power is 17.6 W), stable acoustic flow phenomenon forms in the ultrasonic field, which can effectively improve the acoustic energy radiation efficiency, greatly increase the cavitation effect area, and thereby improve the sonochemical reaction efficiency. The distribution area of ultrasonic cavitation effect in the reactor is related to the ultrasonic power (amplitude) and the height of the liquid level: when the current of power amplifier is increased from 40 mA (electric power 8.8 W) to 120 mA (electric power 26.4 W), the proportion of cavitation area increases by 100.86%, and for the liquid level is 60 mm, the cavitation area proportion increases by 13.11% and 73.91% respectively compared with these for the liquid levels of 50 mm and 70 mm; the diffusion distance of cavitation bubbles can be effectively increased and the cavitation distribution area can be increased by increasing the ultrasonic power and selecting the reasonable liquid level; for the reactor with fixed shape and size, when the acoustic flow velocity reaches a certain threshold, the cavitation effect will be enhanced, and the area of cavitation effect enhancement is located in the region where the acoustic flow velocity is greater than the threshold; the main diffusion distribution of cavitating bubbles is closely related to the acoustic flow velocity field; there are three kinds of diffusion patterns: radial diffusion in the middle of the reactor, diffusion along the axial direction of the horn and radial diffusion at the bottom of the reactor, as well as diffusion along the axial direction of the horn.
查看全文   查看/发表评论  下载PDF阅读器
关闭