文章摘要
张钇,熊水东,马燕新,姚琼,王付印,郭微,朱家华.嵌入注意力机制的卷积神经网络水声目标识别[J].声学技术,2022,41(6):796~803
嵌入注意力机制的卷积神经网络水声目标识别
Underwater target recognition by CNN with attention mechanism
投稿时间:2021-04-15  修订日期:2021-06-08
DOI:10.16300/j.cnki.1000-3630.2022.06.002
中文关键词: 水声目标识别  注意力机制  多尺度残差  卷积神经网络  特征融合  低信噪比  稳健  自主式水下航行器
英文关键词: underwater acoustic target recognition  attention mechanism  multiscale residuals  convolutional neural network  feature fusion  autonomous underwater vehicle (AUV)
基金项目:国防科技大学科研计划项目(ZK20-39,ZK20-35)、国家自然科学基金(62001490)、173计划项目(2019-JCJQZD026-00)。
作者单位E-mail
张钇 国防科技大学前沿交叉学科学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
熊水东 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
马燕新 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
mayanxin@nudt.edu.cn 
姚琼 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
王付印 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
郭微 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
朱家华 国防科技大学气象海洋学院, 湖南长沙 410073
海洋探测技术湖南省重点实验室, 湖南长沙 410073 
 
摘要点击次数: 382
全文下载次数: 659
中文摘要:
      针对低信噪比水声目标单一特征识别率低,稳健性差的问题,提出一种基于注意力机制和多尺度残差卷积神经网络(Multi-scale Residual CNN with Attention,MR-CNN-A)进行特征融合的识别方法。该方法根据多尺度卷积核与特征图形成多分辨率分析关系,并以此通过注意力机制实现优势特征权值提取与融合,从而提高模型在文中水声数据集上提取目标噪声特征和分类识别的稳健性与抗噪能力。开展了4类舰船噪声和海洋环境噪声的识别试验、水下和水面自主式水下航行器的识别试验,以及不同信噪比条件下目标噪声的识别试验。结果表明:对于文中所涉及的水声目标噪声和人工高斯白噪声干扰,该网络模型识别正确率明显高于支持矢量机与简单卷积神经网络,且对高斯白噪声的抑制能力远强于支持矢量机与简单卷积神经网络,稳健性好,模型复杂度小。
英文摘要:
      Because of low recognition rate and poor robustness to a single feature of underwater acoustic target with low signal to noise ratio (SNR), a feature fusion recognition method based on attention mechanism and multi-scale residual convolution neural network (named MR-CNN-A network) is proposed. According to the multi-resolution analysis relationship formed by multi-scale convolution kernel and feature map, and by using the attention mechanism to extract and fuse the dominant feature weights, this method can enhance the robustness and noise immunity of the model on the underwater acoustic data set. Four types of ship noises and the marine ambient noise recognition tests, underwater and surface autonomous underwater vehicle (AUV) recognition tests, and the recognition tests of target noises under different signal to noise ratios are carried out. The results show that: for the interferences of underwater acoustic target noise and artificial Gaussian white noise involved in this paper, the recognition accuracy of the network model is obviously higher than that of support vector machine and simple convolutional neural network. The model is more powerful in suppressing Gaussian white noise than support vector machine and simple convolutional neural network, and has good robustness and low complexity.
查看全文   查看/发表评论  下载PDF阅读器
关闭